Freedom of choice - an increasingly important aspect for Information Technology solutions and the ability of those solutions to be consumed by anyone, any where on any platform. Extractor is a patented content summarization technology researched and developed to work on any computing platform. From its base in ANSI C the commercial Extractor Software Development Kit is ready to be consumed on:

     ¤  Linux,
     ¤  Solaris and
     ¤  Windows

computing platforms (other platforms are available by custom request.)

In true cross-platform consistency, the Extractor Software Development Kit (SDK) includes supporting API's
for these development languages:

     ¤  C (C, C++, VC++)
     ¤  Java
     ¤  Visual Basic
     ¤  Python 
     ¤  Perl      

In addition to the cross platform flexibility, Extractor's internal features are fully exposed to the developer for customizable implementations:

     ¤     Generate summaries automatically
     ¤     Native file formats support:  Text, HTML, and Email
     ¤     HTML Tag filtering
     ¤     Text, HTML and E-mail filters
     ¤     Document highlighting and Sentence marking
     ¤     Multi-lingual
*: English, French, German, Japanese,
            Korean & Spanish
     ¤     Multi-Threaded
     ¤     Define summary results - set the number of desired
            output phrases
     ¤     Stop Word - list any number of words for Extractor to ignore
     ¤     Go Word, Go Phrase - list any number of words/
            phrases for Extractor to focus on
     ¤     Frequency Ranking - rank summary results in ascending or
            descending order, with or without percentage values
     ¤     Multi-document processing - summarize multiple documents
            simultaneously
 

In terms of computer automated text summarization there are many definitions  and implementations including Bayesian, Heurstic or linguistic.  Extractor  uses a Genetic approach which in itself provides a learning process. This is important for the summarization utility to move from one subject domain to another,  versus other approaches which are traditionally domain specific and thereby  require greater human intervention to adjust from one subject domain to another. For a detailed discussion please see "Learning Algorithms for Keyphrase Extraction"

 
 
    
Features

     Evaluate
            online demonstration
            sample application
            software development kit
      
     Platform
            operating system
                    Windows
                    Solaris
                    Linux
                    Mac OS
                    HP/UX
                    ...
            development
                    C / C#
                    Java
                    Perl
                    Python
                    Visual Basic

     API Functions

     Great for...
         
workforce optimization
          web log tagging
          refined search
          knowledge management (KM)
          information retrieval (IR)
          semantic web development
          indexing
          categorization
          cataloguing
          inference engines
          document management
          Portal Services

     Examples:
         
Research
          Internet Communications
          HomeLand Security
          Contextual Web Search
          Document Mangement
          Indexing
          Knowledge Management
          Intellectual Property Filter
          Intelligent Search
          Text Summarization
          Wireless Push Technology


     Supporting Documentation

     FAQ

     Purchase

     About

     Contact

     Home